Inhibition of eIF2alpha dephosphorylation maximizes bortezomib efficiency and eliminates quiescent multiple myeloma cells surviving proteasome inhibitor therapy.

نویسندگان

  • Denis M Schewe
  • Julio A Aguirre-Ghiso
چکیده

The proteasome inhibitor bortezomib (Velcade) effectively eradicates multiple myeloma (MM) cells, partly by activating endoplasmic reticulum (ER) stress apoptotic signaling. However, MM recurrences in bortezomib-treated patients are invariable. We have shown that ER stress signaling can also induce growth arrest and survival in cancer cells. Thus, we hypothesized that bortezomib therapy could induce quiescence and survival of residual MM cells, contributing to disease recurrence. Here, we report that in MM cells, proteasome inhibition with MG-132 or bortezomib results in a surviving cell fraction that enters a prolonged quiescent state (G(0)-G(1) arrest). Mechanism analysis revealed that bortezomib-surviving quiescent cells attenuate eIF2alpha phosphorylation and induction of the ER stress proapoptotic gene GADD153. This occurs independently of the eIF2alpha upstream kinases PERK, GCN2, and PKR. In contrast, the prosurvival ER-chaperone BiP/Grp78 was persistently induced. The bortezomib-surviving quiescent fraction could be eradicated by a simultaneous or sequential combination therapy with salubrinal, an inhibitor of GADD34-PP1C phosphatase complex, and, in consequence, eIF2alpha dephosphorylation. This effect was mimicked by expression of a phosphorylated mimetic eIF2alpha-S51D mutant. Our data indicate that bortezomib can induce growth arrest in therapy-surviving MM cells and that attenuation of eIF2alpha phosphorylation contributes to this survival. Most importantly, this survival mechanism can be blocked by inhibiting eIF2alpha dephosphorylation. Thus, strategies that maintain eIF2alpha in a hyperphosphorylated state may be a novel therapeutic approach to maximize bortezomib-induced apoptosis and reduce residual disease and recurrences in this type of cancer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

YM155 exerts potent cytotoxic activity against quiescent (G0/G1) multiple myeloma and bortezomib resistant cells via inhibition of survivin and Mcl-1

YM155, a novel small molecule inhibitor of survivin, shows broad anticancer activity. Here, we have focused on the cytotoxic activity of YM155 against multiple myeloma (MM) including cytokinetically quiescent (G0/G1) cells and bortezomib resistant cells. YM155 strongly inhibited the growth of MM cell lines with the IC50 value of below 10 nM. YM155 also showed potent anti-myeloma activity in mou...

متن کامل

Bortezomib (PS-341): a novel, first-in-class proteasome inhibitor for the treatment of multiple myeloma and other cancers.

BACKGROUND Multiple myeloma (MM) is an incurable malignancy that is diagnosed in approximately 15,000 people in the United States each year. The novel proteasome inhibitor bortezomib has shown antitumor activity in preclinical studies and has entered clinical trials, with encouraging results to date. METHODS We review and summarize preclinical work demonstrating the tumoricidal effects of pro...

متن کامل

Relapsed and refractory lymphoid neoplasms and multiple myeloma with a focus on carfilzomib

Proteasomal inhibition revolutionized myeloma therapies in this decade of novel agents. The only US Food and Drug Administration approved proteasome inhibitor so far, bortezomib effectively targets the constitutive proteasome subunit β5 of the 26S proteasome. Bortezomib induces high and quality response rates that are durable. However, myeloma cells acquire resistance to bortezomib through vari...

متن کامل

Cap dependent translation contributes to resistance of myeloma cells to bortezomib

Multiple myeloma (MM) is the second most predominant blood malignancy. Proteasome inhibitors like bortezomib have increased life expectancy, but eventually patients develop resistance to therapy. It was proposed that bortezomib acts through the induction of the Unfolded Protein Response (UPR), i.e., accumulation of misfolded proteins causing a lethal stress response. By this theory, increasing ...

متن کامل

The early marginal zone B cell-initiated T-independent type 2 response resists the proteasome inhibitor bortezomib.

The proteasome inhibitor bortezomib is approved for the treatment of multiple myeloma and mantle cell lymphoma. We recently demonstrated that bortezomib eliminates autoreactive plasma cells in systemic lupus erythematosus mouse models, thereby representing a promising novel treatment for Ab-mediated diseases. In this study, we investigated the effects of bortezomib on the just developing and pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 69 4  شماره 

صفحات  -

تاریخ انتشار 2009